MEASUREMENT OF THE CONCENTRATION PROFILES
AND COEFFICIENTS OF INTERDIFFUSION OF THE
VAPORS OF SOME LIQUIDS IN ARGON

L.I. Kurlapov and S. N. Chernyak UDC 533.15

The concentration profiles, the localand integral coefficients of interdiffusion, andthe time of
establishment of steady diffusion of vapors of ether, acetone, benzene, and ethyl alcohol in
argon are measured.

The coefficients of diffusion of vapors in a gas can be used in calculations of the mass transfer in various
technologicaldevices. The application of kinetic theory also permits their use for finding the molecular-
kinetic parameters of vapors [1]. Measurements of coefficients of interdiffusion by the Stefan method have
revealed the influence of the dimensions of the diffusion cell on the results obtained [2, 3], whichcan explain
the pronounced concentration dependence of the coefficients of interdiffusion, as occurs for gaseous systems
[4]. The concentrationdependence ofthe coefficients of interdiffusion leads to the fact that the concentration
profiles ofa diffusing mixture will differ from those expectedfor the Stefan methodwith a constant coefficient
of interdiffusion, as well as to the fact thatone mustuse local coefficients of interdiffusion to find the molecular-
kinetic parameters.

Inthe present communication we present the results of measurements of the concentration profiles and
local coefficients of interdiffusion of the vapors of 1) (C,H;),0; 2) (CH;),CO; 3) CgHg; 4) CoH;OH inargon by the
methoddescribed earlier [5, 6]. The measurements were conducted at atmospheric pressure (702 mm Hg on
the average) and at a temperature of 300°K.

The profiles of the vapor concentration ¢, for the four respective systemsare presentedin Fig. 1. The
errors in the relative volume concentrations of the vapors with an accuracyof 0.95 were +0.006, +0.002,
£0.001, and +0.002 for systems 1-4, respectively. It isseen from Fig. 1 that the measured valuesofc, at
acertain X =x/Lgf (x is the coordinate along the axis of the diffusion capillary and Lef is the effective length
ofthe capillary with allowance for the end corrections for systems 1-3) differ from the theoretical values [7]
found with the condition of independence of the coefficients of interdiffusion from the concentration. The experi-
mentally obtained profiles can be represented by polynomials, whose coefficients were found by the least-
squares method:on a Minsk-22 computer:

1) ¢, = —1.277X5 4- 2.883X* — 2.765X3 4 0.7566X2 — 0.3904.X -0.7991,

2) ¢, = — 0.05442X5% 1- 0.1265X* — 0.1310X% —0.01811X2 — 0.2905X 4 0.3693,
3) ¢, = —0.01260X* + 0.01968X3 — 0.02681X2 — 0,1240X - 0.1445,

4) ¢, = 0.003718X2 — 0.07525X 4 0.07527.

Differentiation of function c¢y(X) allows one to find the local values of the concentration gradients and
hence the local coefficients of interdiffusion [5, 6]. In Fig. 2 we plot the local coefficients of interdiffusion
Dy (points), reduced to standard pressure, for systems 1, 2, 3, and 4, respectively. Themean values of the

TABLE 1. Coefficients of Interdiffusion of Vapors of Liquids into
Argon, Reducedto Standard Pressure

Vapor of liquid T, °K Dye-104, m*/sec
1 2 3 ! 4
(C,H;).0 300 0,0919+4-0,0013 0,099--0,003
(CH).CO 300 0,0984-0,002 0.09850,003
sHg 300 0,083+ 0,003 0,084-+0,003
CyH;OH 299 0,101 +£0,008 0,109-0,010
i
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Fig. 1. Distributions of vapor concentration along axis of diffusion capillary
of a Stefan cell (concentration profiles) for the following systems: 1) Ar —
(CyH5),0;2) Ar—(CHy),CO: 3) Ar— C.Hg; 4) Ar — C,H;0H; points) experiment;
curves) theoryunder the assumption of independence of coefficient of interdif-
fusionfrom the concentration.

Fig. 2. Dependence of coefficients of interdiffusion (10~* m?/sec) on con-
centration for systems 1-4: a) experiment; b) polynomials (1); ¢) Maxwell —
Boltzmann theory with gy;(Ar) =0.332, 0y5((CyH;),0) =0.674, 09y((CH;),CO) =
0.632, 09y(CeHg) =0.676, and ¢4y (C,H;OH) =0.559 N/m, found from viscosity
[8, 9]; d) Maxwell — Boltzmann theory with oy (Ar) =0.344 [4, 11], 0y, -
((CHy),C0) =0.580, and gy,(CgHg) =0.630 N/m, found from Dj,(c; —1); )
second approximation of rigorous kinetic theory [1]; f) from equations of
[10] with viscosity parameters taken from [1, 9].

test temperatures were the same as for the integral coefficients of interdiffusion, since the localand integral
coefficients of interdiffusion were measured in parallel using differentanalyzers. It is seenfrom Fig. 2 that
the concentration dependence cannot be neglected for systems 1-3, since it exceeds the error in the measure-
ments of the local coefficients of interdiffusion. For the fourth system the concentration dependence, although
itdoes lie within the limits of the experimentalerror, shouldnot be neglected since the local coefficients of
interdiffusion were obtained from continuous curves of the concentration distributions over the length of the
capillary. This dependence is approximatedfor systems 1, 2, 3, and4 by the following respective polynomials:

1) Dy, = 0.05762c} —— 0.1244c, + 0.1449,

2) Dy, = — 0.06610¢] + 0.07496¢, + 0.08184,
(1)
3) D,y = — 0.3740c} + 0.6033¢, — 0.1532,

4) D,, = — 2.8591 + 5.309¢, — 2.349.

As seen from Fig. 2, not one of the existing equations of kinetic theories describes the experiment fully.
In the concentration range under consideration, the second approximation of the rigorous theory of [1]gives
an almost constant value of the coefficient of interdiffusion. The Maxwell — Boltzmann theory for the rigid-
sphere potential [11] deseribes the experimentbetter than the others. Theuse of ¢yy and gy foundfrom the
coefficients of viscosity of the pure components [8, 9] (solid line) for systems 2 and 3 gives understated values,
which is explained by the inexact relationship between the coefficients of viscosity and self-diffusion given by
the Maxwell — Boltzmann theory.
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Fig. 3. Establishmentof a steady vapor concentra-
tion e, in the diffusion cell during diffusion of the
following systems: 1) Ar — (C,H;),0; 2) Ar — (CHjy),-
CO; 3) Ar — CgHg; 4) Ar — C,H,OH.

As notedabove, from the measured coefficientof interdiffusion one cancalculate ¢. If the concentration
dependence of the coefficient of interdiffusion is significant then g;; must be derived from the trace coefficient
of interdiffusion [10]. In the Maxwell — Boltzmann theory the trace coefficient of diffusion withe¢y = 1 is expressed
through oy,. Its valuesfor systems 2 and3 are found from (1) withe; =1. From these values one calculates oy
and then, using the known collision diameters of the gases, found from the coefficients of self-diffusion [4, 11},
e.g., and the combination rule, one finds the rigid-sphere diameters for the vapors. Under the experimental
conditions we obtained the following values for acetone and benzene vapors, respectively: 2) gy =0.580 N/m and
3) 093 =0.630 N/m.

The method usedallows one to measure the integral coefficient of interdiffusion 1512, usually presented
in the literature, simultaneously with the concentration distribution. The results of the measurementsare
presented in Table 1. The values of ]_)12 using the vapor concentration atthe lower end of the diffusion capillary,
corresponding tothe saturating vapor pressure, are presented in the third column while the values obtained by
extrapolation of the functionc,y(X) to X =0 are presented in the fourth column. For the majority of systems
these values coincide within the error limits. This indicates that the diffusionof the vapor isthe limiting pro-
cess in the diffusion cell. The differences for ether vapor might have originated from the factthat with intense
evaporation the correction to the temperature of the liquid surface, which we estimated for all the systems
from the condition of energy balance, was less well-founded for ether, so thatan uncontrolled systematic error
in the saturating vapor pressure is possible for this system. In such a case itis preferable to use the value from
the fourth column of the table. The integral values of ]_312 lie within the range of variation of the local values
of Dy, (Fig. 2).

All the measurements described were carried out in a steady state. The time of onset of steady diffusion
was measured in control experiments. For this the value of the vapor concentration ¢, at a certain cross sec-
tion of the diffusion capillary was recorded at certain times. The results of the measurements are presented
in Fig. 3.

As seenfrom the figure, a steady process sets inat a dimensionless diffusion time Fo> 2 for all the sys-
tems. This agrees with the predictions of the analytical theory of heatconduction withallowance for the triple
analogy [12]. The moment of the introduction of the liquid at the bottom of the diffusion cell filled with the test
gas was takenas the starting pointin our tests, and therefore the agreement of the measured time of onset of
the steady process with the theoryindicates that the time in which the vapor reaches saturation above the sur-
face of the liquid itself is negligibly small.

NOTATION

X =x/Lef; X, coordinate along axis of diffusion capillary; Lgf, effective length; ¢y, ¢,, relative volume
concentrations of gas and vapor; Dy,;, Dy,, local and integral coefficients of interdiffusion; ¢, collision diameter
of molecules; Fo = 4D7/L?, diffusional Fourier number; T, temperature.
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INFLUENCE OF HEAT CONDUCTION OF
THE WALL ON THE TURBULENT PRANDTL
NUMBER IN THE VISCOUS SUBLAYER

P. I. Geshev UDC 532.517.4

Temperature pulsations in the viscous sublayer and inthe heat-conducting wall are analyzed.
The analytical dependence of the criterion Pry on the parameters Pr and A and the coordinate
v+ is determined.

In[1-2] it is shown that inthe viscous sublayer of a turbulent boundary stream the characteristics of the
wall material affect the magnitude of the temperature pulsations, and a dimensionless criterion is obtained for
this effect: A = \f(pcpx)z /(pcpx)j . The influence of the molecular Prandtl number (or the Schmidt number Se
in the case of mass transfer [3]) on the turbulent transfer in the viscous sublayer was investigated theoretically
in [3-5]. The influence of the wall material was partially taken into account in [3-5] by settingup different
boundary conditions: ofthe first kind [8(y =0) = 0] or of the second kind [(86/8y) (y =0) =0]. This corresponds to
A= and A =0. In the present paper the theory of [3-5] is generalized toarbitrary values of A.

We will start from the following equations for the temperature pulsations:

o0 dT 0%0

— L =a 0), (1)
of te dy dy? >0)
o 0%
—~ =b 0), 2
ot oy y<<0) @
=9 (y=0), 3)
a0 do
M = A, —F (== 0). 4)
1By 2 3y (v )

Equation (1) describes the temperature pulsations in the viscous sublayer; (2) is the equation of heat prop-
agation in the solid wall;the conditions (3)-(4) express the continuity of the temperature and of the heatflux at
the boundary. In(l) we neglected the dependence of v and ¢ on the coordinates x and z. The applicability of
suchan approximation can be justified rather rigorously inthe case of large Prandtl numbers (see [3-5]), but

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 35, No. 2, pp. 292-296, August, 1978. Original
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